三维扫描仪使用不同的 3D 扫描技术采集构建 3D 模型所需的 3D 数据。可将三维扫描仪分为以下几类:
✔ 基于三角测量的 3D 激光扫描仪
顾名思义,该技术采用三种元件:激光发射器、激光反射和摄像头,呈三角形放置。基于三角测量的 3D 激光扫描仪可投射激光线,这些激光线会反射到被测物体上。然后,摄像头会检测激光反射情况,从而评估物体形状、几何结构和纹理。
激光发射器、物体上的激光反射以及摄像头呈三角形放置
激光三角测量能够测量实物和环境。根据物体或环境的形状、几何结构或纹理,激光可照射到物体表面的不同位置。因此,反射激光束的角度和位置在摄像头视野中会有不同呈现。根据传感器上反射光斑的位置以及从激光源到传感器的距离,可以计算到物体的距离。
手持式激光 3D 扫描仪通过三角测量创建 3D 模型,即使设备处于运动状态也可以进行。使用参考特征(通常是被扫描表面的粘贴反射目标点)确定扫描仪的位置即可达到此目的。
选择基于三角测量的 3D 激光扫描仪的理由有多种。此类扫描仪虽然是便携式,但具有出色的精确度。因此,可将其用于具有振动和不稳定的生产环境,且不会影响结果的准确性。此外,价位不高,基本能满足您所期望的精确度水平。
✔ 结构光 3D 扫描仪
结构光 3D 扫描仪也采用上述三角测量技术,但其使用的是结构光,而非激光。这种类型的 3D 扫描仪可将一系列光线投射到物体表面。然后,摄像头再测量投影图案的变形情况,并计算视野中每个点从 3D 扫描仪到物体表面的距离。用于 3D 扫描的结构光源可以是白色或蓝色。
与激光 3D 扫描仪相比,选择结构光 3D 扫描仪的主要原因是速度快。结构光技术并非同时扫描单个点,而是在几分之一秒内扫描整个视野,从而使扫描大面积区域的速度呈指数级增长。大多数结构光的光技术对眼睛也很安全。但结构光 3D 扫描仪对照明条件和反射表面比较敏感,使其很难在户外阳光下使用。
✔ 深度感应摄像头
深度感应摄像头用于自动驾驶车辆,如机器人、拖拉机和叉车,可在无手动导航的情况下帮助其四处移动。这些设备通过光源(激光或 LED)在附近环境中投射光图像。传感器根据所获得的变化情况计算到达各个障碍物的距离,从而使车辆避开这些障碍物。通过这个过程,集成了深度感应摄像头的装置或设备可在自动行驶时做出实时智能决策。
深度感应摄像头的主要优势是简单方便、经济实惠。然而,测量精确度和细节层次会受到与被测物体的距离之影响。深度感应摄像头虽然能够检测物体是否存在,但其精确度水平使其无法成为精密测量仪器。
✔ 摄影测量
摄影测量使用摄影图像获得关于实物或其环境的 3D 信息。这种方法可以使用大型物体、建筑物或位置地点的重叠照片,并通过数学算法将其转换为 3D 模型或 3D 图像。摄影测量还可作为 3D 资源创建工具,用于创建逼真图像。
摄影测量的主要优势是对测量物体的尺寸没有限制。然而,由于摄影测量依赖图像,因此当物体的颜色相同且均匀时,则会存在一些限制。在此类情况下,生成的模型通常具有一些缺陷,这些缺陷会影响 3D 模型的测量精确度和细节。
✔ LiDAR 技术
激光探测及测距 (LiDAR) 技术能测量可变距离,通过激光或红外光瞄准物体或表面,并测量反射光返回传感器所需的时间。将此技术产品安装在无人机上,可以用于生成地球形状的高分辨率地图和数字 3D 图像,这通常用于测绘学、地理学、地质学或林业。还可将其用于自动驾驶车辆的控制和导航,此技术产品曾经安装在飞越火星地形的火星直升机“机智号”上。
激光雷达技术用于自动驾驶车辆的控制和导航,监测车辆之间的距离
尽管激光雷达图像是重现场景而不是拍摄照片,但与深度感应摄像头相比,该技术具有几种优势。摄像头提供 2D 环境图示效果,而激光雷达则显示更为精确的 3D 环境视图。此外,激光雷达可在夜间看到物体,因为其本身具有内置光源。相比之下,基于摄像头的系统需要足够的光线才能发挥最佳功能,因此,夜间的效果会变得不太可靠。